Loading...

Separability within commutative and solvable associative algebras. Under consideration of non-unitary algebras. With 401 exercises

©2018 Research Paper (postgraduate) 257 Pages

Summary

Within the context of the Wedderburn-Malcev theorem a radical complement exists and all complements are conjugated. The main topics of this work are to analyze the Determination of a (all) radical complements, the representation of an element as the sum of a nilpotent and fully separable element and the compatibility of the Wedderburn-Malcev theorem with derived structures. Answers are presented in details for commutative and solvable associative algebras. Within the analysis the set of fully-separable elements and the generalized Jordan decomposition are of special interest. We provide examples based on generalized quaternion algebras, group algebras and algebras of traingular matrices over a field. The results (and also the theorem of Wedderburn-Malcev and Taft) are transferred to non-unitary algebras by using the star-composition and the adjunction of an unit. Within the App endix we present proofs for the Wedderburn-Malcev theorem for unitary algebras, for Taft's theorem on G-invariant radical complements for unitary algebras and for a theorem of Bauer concerning solvable unit groups of associative algebras.

Excerpt

Table Of Contents


Details

Pages
Type of Edition
Erstauflage
Publication Year
2018
ISBN (PDF)
9783960677215
ISBN (Softcover)
9783960672210
Language
English
Publication date
2018 (December)
Keywords
associative algebra commutative solvable non-unitary Wedderburn-Malcev theorem
Product Safety
Anchor Academic Publishing

Author

Sven Bodo Wirsing was born in 1975 in Neumunster. After graduating from high school at KKS in Itzehoe (with a focus on mathematics and physics), he studied mathematics with a minor in business administration (especially logistics) at CAU university in Kiel. He did his doctorate in 2005 on group and algebra theory. During his years of study in Kiel he gained experience in the analysis of interdisciplinary processes, which are reflected in different disciplines of algebra, such as group theory, representation theory, theory of Lie and associative algebras. From this experience, he also studied and analyzed the subject matter of the present work. Since the end of his doctorate, Dr. Wirsing has been working as a senior IT consultant for logistics processes at a renowned IT consulting firm, where he is responsible for logistics optimization and maintenance. Since 2012, he has published several books on algebras.
Previous

Title: Separability within commutative and solvable associative algebras. Under consideration of non-unitary algebras. With 401 exercises
book preview page numper 1
book preview page numper 2
book preview page numper 3
book preview page numper 4
book preview page numper 5
book preview page numper 6
book preview page numper 7
book preview page numper 8
book preview page numper 9
book preview page numper 10
book preview page numper 11
book preview page numper 12
book preview page numper 13
book preview page numper 14
book preview page numper 15
book preview page numper 16
book preview page numper 17
book preview page numper 18
book preview page numper 19
book preview page numper 20
book preview page numper 21
book preview page numper 22
book preview page numper 23
book preview page numper 24
book preview page numper 25
book preview page numper 26
book preview page numper 27
book preview page numper 28
book preview page numper 29
book preview page numper 30
book preview page numper 31
book preview page numper 32
book preview page numper 33
book preview page numper 34
book preview page numper 35
book preview page numper 36
book preview page numper 37
book preview page numper 38
book preview page numper 39
book preview page numper 40
257 pages
Cookie-Einstellungen